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Abstract 

Adler and Ma re-examine the proposed signatures of statistical confidence and argue that hidden 

assumptions in the mathematical derivations limit their applicability. We agree that if the conditions explicitly 

stated in our Theorems 2 and 4 are violated then the specific predictions differ. The counter-examples 

provided, however, create new assumptions, defining stimulus noise in a manner such that stimuli 

sometimes convey opposite evidence about the categories. Under these new assumptions, even if the 

decision maker is correct about the observed stimulus category, the choice may be labeled as incorrect. 

Thus, choice and confidence are not represented in a consistent way, and hence it is not an appropriate 

model for most decision tasks used in the field. Their other argument that our results do not provide 

sufficient conditions for the ‘Bayesian Confidence Hypothesis’ (BCH) is perplexing, since we made no 

mention of either BCH or sufficiency. In fact, we showed that the proposed signatures could be also 

produced by frequentist and bootstrap statistics, providing a direct demonstration that these do not imply 

BCH. Our framework surpasses previous algorithmic models not because the relationship between 

confidence and other variables would necessarily look different, but because of the generality of the 

statistical assumptions. Nevertheless, we appreciate the detailed examinations of the mathematical 

boundary conditions of our framework, which we see as complementary and not controversial. 

 

 

Confidence is a variable internal to a decision maker, one that cannot be directly controlled or observed in 

experiments. Thus, it is challenging to appropriately identify confidence as a computation and to determine 

whether a particular behavioral response relies on this computation. To resolve this issue, numerous 

studies in neuroscience and psychology have employed quantitative models to formalize the decision 

maker’s internal variable of “confidence” in terms of observable and quantifiable parameters. This definition 

enabled the field to study confidence reports in non-human animals (Drugowitsch et al., 2014; Kepecs et 

al., 2008; Kiani and Shadlen, 2009; Lak et al., 2014; Van Den Berg et al., 2016; Zylberberg et al., 2012), 

neural activity (Kepecs et al., 2008; Kiani and Shadlen, 2009; Komura et al., 2013) and even in pre-linguistic 

children (Goupil and Kouider, 2016). 

We and others have observed distinct interrelationships among variables quantifying aspects of decision 

confidence. Curiously, these appeared to be very general across the types of confidence measurements 

we were conducting that spanned from perceptual to knowledge-based decisions and from rats to humans 

(Kepecs et al., 2008; Sanders et al., 2016). Furthermore, we found that several algorithmic models including 

signal detection theory (SDT) and some ‘race’ models (while not others Kiani et al., 2014) could reproduce 

these relationships. Therefore we wondered whether there was an underlying law that dictated these 

relationships. In Hangya et al. 2016 (HSK2016; Hangya et al., 2016) we showed that a statistical definition 

of decision confidence successfully explained these observations, providing a fairly general and, 

importantly, normative framework.  

In their note, Adler and Ma (AM2017; Adler and Ma, 2017) show that under specific conditions, it is possible 

to violate the assumptions of our theorems 2 and 4 to generate different outcomes. We find this a useful 

analysis, since it explores the necessity of our mathematical boundary conditions in more depth, even if 



restricted to specific examples. Their analysis expands on the necessity of the assumptions, which we 

discussed at the end of sections 2.3 and 2.5 in HSK2016. We also appreciate the shorter proof to our 

Lemma 1. In HSK2016, we pointed out the necessity of assumption #1 of theorem 2: ‘belief independence’ 

(p.1849). Similar observations can be noted for assumption #2 ‘percept monotonicity’, which Adler and Ma 

explore in greater detail. They constructed an example by introducing ‘stimulus noise’ that violates this 

assumption (p.4 point 3.3) and therefore leads to a difference in the relationship of stimulus difficulty and 

confidence for incorrect choices. Exploring the necessity of the underlying assumptions and results under 

alternative conditions should always follow the formalization of a general model, which may eventually lead 

to even more general models – this is yet to be achieved for decision confidence. Nonetheless, below we 

point out some misinterpretations in the note by Adler and Ma.  

1. Noise assumptions for the categorization task 

The definition of stimulus and percept noise in AM2017’s version of a categorization task is problematic. 

The examples rely on situations where stimulus noise can result in stimuli that convey the opposite evidence 

about the categories. Therefore, even if the decision maker is correct about the stimulus category, the 

choice may be labeled incorrect. This is not a rare exception, but rather these types of errors dominate in 

the examples presented (see Fig. 2E). The problem with this definition of ‘stimulus noise’ is that these 

choices cannot be correct by definition and hence choice and confidence no longer model mechanisms 

internal to the decision-maker. We deliberately avoided this issue in our framing of decision tasks: the 

randomly generated evidence was re-categorized after completion of the task so that choice correctness is 

assigned based on the actual evidence (stimulus plus stimulus noise). In other words, the examples 

presented by Adler and Ma do not represent choice and confidence in a consistent manner. 

Note that in nearly all laboratory tasks aiming at understanding neural representations of stimuli and 

perceptual decisions, noise is not produced this way. For instance, Kiani & Shadlen and Brunton, Botvinick 

& Brody (Brunton et al., 2013; Kira et al., 2015; Scott et al., 2015) investigated the sources of noise in 

accumulating evidence during perceptual decisions. Every individual stimulus unit was modeled exactly, 

since introducing ‘stimulus noise’ would have limited their ability to understand neural sources of variability. 

The same principle applies to studies of decision confidence. 

2. Is the average confidence in neutral evidence always 0.75? 

In our theorem 4 we proved a surprising result: the average confidence in neutral evidence trials is precisely 

0.75 under the conditions outlined on p 1850. We pointed out that the exact assumptions may not hold in 

real-life situations and went on to argue that “[m]ore generally, this proof points to apparent overconfidence 

in percepts with neutral evidence in situations when the difficulty of the decisions cannot be determined. 

The degree of overconfidence will depend on the actual integrals involved.” Indeed, this apparent 

overconfidence of statistical confidence (and the not the precise value of 0.75) has significant implications 

for interpreting studies that show overconfidence in low discriminability and underconfidence in high-

discriminability conditions, called hard-easy effect (Juslin et al., 2000; Merkle, 2009). This has been also 

pointed out by Drugowitsch and colleagues (Drugowitsch et al., 2014) for a different model class. Adler and 

Ma show that for their specific model, average confidence varies between 0.6 and 0.75 (Fig. 3) depending 

on the ‘external noise’ level (i.e. choice misclassification). This result further supports our claim that 

apparent overconfidence can be observed even for perfectly calibrated confidence estimates.  

3. The Bayesian Confidence Hypothesis 

Lastly, we are perplexed by AM2017’s statements about sufficiency and the ‘Bayesian Confidence 

Hypothesis’. We made no claims at all about sufficiency nor did we use the term ‘Bayesian Confidence 

Hypothesis’. Although the definition of statistical confidence we use is ‘Bayesian posterior probability’, this 

does not reflect a commitment to a statistical school of thought but simply the use of conditional probability 

(and hence Bayes’ Theorem). In fact, we showed that the proposed signatures were also produced by 

frequentist (t-test) and bootstrap statistics (HSK2016, Fig 3) making it explicit that our theorems do not 

imply sufficiency. In fact, many of these signatures were previously shown to be generated by other models 



for confidence, such as signal detection theory (e.g. Kepecs et al., 2008), which is based on a different 

theoretical foundation and is considerably less general.  
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